GNNs for Recommender System

Recommender System as a Graph

Recommender System $\sim$ user와 item이라는 node type을 가지는 biparite graph

Untitled

Modern Recommender System

Top-K Recommendation

Recommender System: Embedding-Based Models

Untitled

각 user와 item에 대한 score function이 필요 & 해당 fuction을 기반으로 user에게 추천을 진행

⇒ 이 때, embedding-based model을 이용하여 user와 item간의 상호작용을 scoring

$\text{For } u \in U \text{ and } v \in V, \bf{u}, \bf{v} \in \mathbb{R}^D$ ; D-dimensional embedding.

Let $f_\theta(\cdot, \cdot): \mathbb{R}^D \times \mathbb{R}^D \rightarrow \mathbb{R}$.

Then $score(u, v) \equiv f_\theta({\bf u}, {\bf v})$.

Training Obejctive

user embedding, item embedding을 위한 encoder 2개, score function을 가지고 높은 Recall@K을 얻는 것

Surrogate Loss Functions

recall@K is not differentiable ⇒ gradient-based optimization을 효율적으로 적용할 수 없음!

$\therefore$ two surrogate loss functions (differentiable & training objective를 잘 만족)

  1. Binary loss
  2. Bayesian Personalized Ranking (BPR) loss

Binary loss